Mechanical analysis for optical retroreflector antenna system for high-orbit segment of glonass navigation system


DOI: 10.34759/trd-2023-130-02

Аuthors

Akentyev A. S.*, Fokina A. A.**, Makarov D. K.***

Research-and-Production Corporation «Precision Systems and Instruments», 53, Aviamotornaya str., Moscow, 111024, Russia

*e-mail: akentev.alexander@gmail.com
**e-mail: anna.fokina.mai@gmail.com
***e-mail: dosiaich@yandex.ru

Abstract

The article presents options of the retro-reflective antennae system (RRAS)for the spacecraft of the high-orbit space complex of the GLONASS system. The options of the structure with various arrangement of orifices, the number of angle reflectors and other constituent parts were analyzed. The structure of the optical retro-reflectory antenna system meeting the requirements for successful leading out as a part of the spacecraft and functioning at the obit of the 36000 km altitude. Mechanical analysis of the selected structure was performed. Analysis of the eigen frequencies of the structure confirmed the absence of resonance between the constituent parts of the spacecraft and RRAS. The study of the stressed-deformed state of the structure revealed that the largest calculated stress in the structure was less than the permissible value, which ensures the RRAS strength margin enough for the system successful leading out as a part of the spacecraft on the working orbit. As long as there are no eigen frequencies less than 100 Hz in the structure, the level of the sinusoidal impact amplitude is equal to the amplitude of the quazi-static impact. The RRAS persistency to mechanical loads impact at the segment of leading out the spacecraft by the booster was confirmed.

Keywords:

spacecraft GLONASS, optical retroreflector antenna system, natural

References

  1. Meshcheryakov V.M., Braginets V.F., Sukhoi Yu.G. Inzhenernyi zhurnal: Nauka i innovatsii, 2019, no. 2, pp. 85-95. DOI: 10.18698/2308-6033-2019-2-1848
  2. Sokolov A.L., Murashkin V.V., Akent’ev A.S., Karaseva E.A. Kvantovaya elektronika, 2013, vol. 43, no. 9, pp. 795–799.
  3. Sokolov A.L., Akent’ev A.S., Nenadovich V.D. Svetotekhnika, 2017, vol. 19, no. 4, pp. 19–23.
  4. Roi Yu.A., Sadovnikov M.A., Shargorodskii V.D. 6 mezhdunarodnyi simpozium «Metrologiya vremeni i prostranstva»: tezisy dokladov. Mendeleevo, VNII FTRI, 2013, pp. 50–54.
  5. Vasil’ev V.P., Shargorodskii V.D. Elektromagnitnye volny i elektronnye sistemy, 2007, no. 7, pp. 6–10.
  6. Voronina E.A., Kuryatov V.N. Nauchnoe priborostroenie, 2001, vol. 11, no. 1, pp. 40-46.
  7. Maletin A.N., Glushchenko A.A., Mishina O.A. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170351. DOI: 10.34759/trd-2022-127-21
  8. Sgadova N.A., Strulev I.M. Trudy MAI, 2010, no. 38. URL: https://trudymai.ru/eng/published.php?ID=14168
  9. Sokolov A.L., Akent’ev A.S., Pershin A.V., Sadovnikov M.A., Soyuzova N.M., Shargorodskii V.D. Patent № 2616439 RF, MPK G02B 5/124 (2006/01), 14.04.2017.
  10. Akent’ev A.S., Nenadovich V.D., Sokolov A.L., Sadovnikov M.A., Shargorodskii V.D. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2018, vol. 16, no. 2, pp. 37–45.
  11. Gerasimchuk V.V., Zhiryakov A.V., Kuznetsov D.A., Telepnev P.P. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168184. DOI: 10.34759/trd-2022-125-12
  12. Korovaitseva E.A. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/eng/published.php?ID=96401
  13. Okonechnikov A.S., Tarlakovskii D.V., Fedotenkov G.V. Obobshchennye funktsii v mekhanike deformiruemogo tverdogo tela. Osnovy teorii (Joint functions in the mechanics of the deforming solid body. Basis of the theory), Moscow, Izd-vo MAI, 2019, 100 p.
  14. Lobastov I.A., Paleshkina Yu.V., Alekseeva N.N., Paleshkin A.V. Trudy MAI, 2019, no. 104. URL: https://trudymai.ru/eng/published.php?ID=102240
  15. Nikonov K.P. Trudy MAI, 2013, no. 70. URL: https://trudymai.ru/eng/published.php?ID=44466
  16. Potanin D.V., Samokhin P.A., Zelenyi A.E., Yakovlev I.M., Samokhina E.A. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164180. DOI: 10.34759/trd-2022-122-06
  17. Pavlov A.N., Pavlov D.A., Umarov A.B. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161425. DOI: 10.34759/trd-2021-120-11
  18. Verbitskii A.B., Rodionov G.L., Sidorenko A.S. Aerospace MAI Journal, 2012, vol. 19, no. 1, pp. 35-42.
  19. Khmel’nitskii Ya.A., Salina M.S., Kataev Yu.P. Aerospace MAI Journal, 2018, vol. 25, no. 3, pp. 17-24.
  20. Mikhalev S.M. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105690

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход