Simulation model for studying the effect of errors of inertial instruments on the accuracy of determining the orientation and navigation parameters of the strapdown inertial navigation system of the launch vehicle


Аuthors

Zubkov A. V.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

e-mail: vka@mil.ru

Abstract

The paper solves the actual problem of stochastic estimation of errors in orientation and navigation parameters of a launch vehicle in flight based on the use of a developed simulation model of a strapdown inertial navigation system.
The subject of research in this work is the assessment of the influence of the zero displacement components of inertial sensors (accelerometers and angular velocity sensors), which include systematic and random errors.
The paper analyzed the types and causes of errors in accelerometers and angular velocity sensors that make up the measuring base of most modern strapdown inertial navigation systems of various aircraft.
Based on this, the task of the study was to determine the dependencies of the magnitude of errors in determining orientation and navigation parameters on constant systematic offsets of zeros, random walks of zeros and noise components of accelerometer signals and angular velocity sensors.
To solve the problem, a simulation model of a strapdown inertial navigation system is proposed, implemented in the Rodrigue-Hamilton parameters and their hypercomplex mapping - quaternions. The basis of the proposed model, in addition to units for implementing algorithms of a gimbal inertial navigation system and a model of movement of a launch vehicle, which serves as a source of trajectory information for functioning of the gimbal inertial navigation system and a reference for a unit for evaluating results, is an inertial measuring unit. The unit has accelerometer and ACS measurement model. The developed model is distinguished by the use of calculated ratios of meter errors, probabilistic ratios and differential equations of errors implemented in the MATLAB environment.
The results of the simulation of the ideal operation of the strapdown inertial navigation system showed compliance with theoretical provisions, which indicates the adequacy of the proposed probabilistic model of inertial sensor errors.
In order to obtain a stochastic estimate of the errors of the orientation and navigation parameters, the modeling and calculation of errors is carried out based on the results of thirty implementations of the launch of the launch vehicle, which simulates the launch of the payload into the circular orbit of the Earth with a height of 360 km. The elimination time is 500 seconds.
Studies carried out using the proposed model of the effect of each component of errors on the accuracy of determining the orientation and navigation parameters of the gimbal inertial navigation system of the launch vehicle have shown that it is necessary to impose increased requirements on the exclusion of systematic components of errors of inertial sensors, which leads to the need to improve calibration methods and initial instrument alignment.

Keywords:

strapdown inertial navigation system, launch vehicle, simulation model, accelerometer and angular velocity sensor errors

References

  1. Vatutin M.A., Klyuchnikov A.I., Fominov I.V. Analysis of the features of the use of free-form inertial navigation systems in light-class space rockets. IV Vserossiiskaya nauchno-prakticheskaya konferentsiya «Sovremennye problemy sozdaniya i ekspluatatsii vooruzheniya, voennoi i spetsial'noi tekhniki»: sbornik trudov. Saint Petersburg: VKA imeni A.F. Mozhaiskogo Publ., 2018. P. 23–28. (In Russ.).
  2. 2. Klyushnikov V.Yu. Ultralight class launch vehicles: niche in the market of launch services and promising projects. Vozdushno-kosmicheskaya sfera. 2019. No. 3. P. 58-71. (In Russ.).
  3. 3. Ermakov P.G., Gogolev A.A. Comparative analysis of information aggregation schemes of free-form inertial navigation systems of unmanned aerial vehicles. Trudy MAI. 2021. No. 117. (In Russ.). URL: https: //trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  4. 4. Ermakov P.G., Gogolev A.A. A software package of algorithms for autonomous determination of angular orientation parameters of unmanned aerial vehicles. Trudy MAI. 2022. № 124. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=167100. DOI: 10.34759/trd-2022-124-17
  5. 5. Litvin M.A., Malyugina A.A., Miller A.B., Stepanov A.N., etc. Types of errors in the INS and methods of their approximation. Informatsionnye protsessy. 2014. V. 14, No. 4. P. 326-339. (In Russ.).
  6. 6. Golyakov A.D., Richnyak A.M., Fominov I.V. Investigation of the accuracy of navigation parameters of a spacecraft with an adaptive autonomous navigation system. Trudy MAI. 2022. No 126. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=168986. DOI: 10.34759/trd-2022-126-23
  7. 7. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial'nykh navigatsionnykh system (Fundamentals of building free-form inertial navigation systems). Saint Petersburg: TsNII «Elektropribor» Publ., 2009. 280 p.
  8. 8. Mohinder G.S., Weill L.R., Andrews A.P. Global Positioning Systems, Inertial Navigation and Integration. New York, A John Willey and Sons, 2007, 525 p.
  9. 9. Matveev V.V. Inertsial'nye navigatsionnye sistemy (Inertial navigation systems). Tula: TulGU Publ., 2012. 199 p.
  10. 10. Mikoni S.V., Sokolov B.V., Yusupov R.M. Kvalimetriya modelei i polimodel'nykh kompleksov: monografiya (Qualimetry of models and polymodel complexes: a monograph). Moscow: RAN Publ., 2018. 314 p.
  11. 11. Zaitsev D.O., Pavlov D.A., Nestechuk E.A. A technique for monitoring the technical condition of on-board launch vehicle systems based on processing rapidly changing parameters. Trudy MAI. 2021. No. 121. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=162665. DOI: 10.34759/trd-2021- 121-18
  12. 12. Eliseev A.V., Kuznetsov N.K., Eliseev S.V. New approaches in assessing the dynamic properties of oscillatory structures: frequency functions and coherence of movements. Trudy MAI. 2021. No. 120. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=161421. DOI: 10.34759/trd-2021-120-08
  13. 13. Popov E.P., Vereikin A.A., Nasonov F.A. Investigation of the physical features of aviation systems using mathematical modeling on the example of an air cooling system. Trudy MAI. 2021. No. 120. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=161429. DOI: 10.34759/trd-2021-120-15
  14. 14. Branets V.N., Shmyglevskii I.P. Vvedenie v teoriyu besplatformennykh inertsial'nykh navigatsionnykh system (Introduction to the theory of strapless inertial navigation systems). Moscow: Nauka Publ., 1992. 280 p.
  15. 15. Meleshko V.V., Nesterenko O.I. Besplatformennye inertsial'nye navigatsionnye sistemy (Free-form inertial navigation systems). Kirovograd: POLIMED – Servis Publ., 2011. 164 p.
  16. 16. Lapshin Yu.V. Sistemy upravleniya raket-nositelei i kosmicheskikh apparatov (Control systems of launch vehicles and spacecraft). Saint Petersburg: A.F. Mozhaisky VKA Publ., 2012. 158 p.
  17. 17. Astapov Yu.M., Veldanov V.A., Lyushnin S.A. Sistemy navedeniya i upravleniya vysokotochnykh boepripasov (Guidance and control systems for precision-guided munitions). Moscow: MGTU im. N.E. Baumana Publ., 2019. 170 p.
  18. 28. Golovan A.A., Mishin V.Yu., Molchanov A.V., Chirkin M.V. A method for analyzing the effect of errors in the gyroscopic channel of a strapless inertial navigation system on errors in inertial notation. Izvestiya RAN. Teoriya i sistemy upravleniya. 2021. No. 4. P. 130–141. (In Russ.).
  19. 19. Belyaev B.V., Golikov I.O., Dobrolyubov A.N., Lebedev A.S. A mathematical model for diagnosing the operability of aircraft with faults in the form of cracks. Trudy MAI. 2020. No. 114. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=118918. DOI: 10.34759/trd-2020-114-09
  20. 20. Gus'kov A.A., Spirin A.A., Norinskaya I.V. Simulation model of an electromechanical steering drive of a small-sized highly maneuverable aircraft. Trudy MAI. 2019. No. 111. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=115157. DOI: 10.34759/trd-2020-111-14


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход